Extensions 1→N→G→Q→1 with N=C2 and Q=D5xC42

Direct product G=NxQ with N=C2 and Q=D5xC42
dρLabelID
D5xC2xC42160D5xC2xC4^2320,1143


Non-split extensions G=N.Q with N=C2 and Q=D5xC42
extensionφ:Q→Aut NdρLabelID
C2.1(D5xC42) = D5xC4xC8central extension (φ=1)160C2.1(D5xC4^2)320,311
C2.2(D5xC42) = C42xDic5central extension (φ=1)320C2.2(D5xC4^2)320,557
C2.3(D5xC42) = Dic5.15C42central stem extension (φ=1)320C2.3(D5xC4^2)320,275
C2.4(D5xC42) = Dic5:2C42central stem extension (φ=1)320C2.4(D5xC4^2)320,276
C2.5(D5xC42) = D5xC2.C42central stem extension (φ=1)160C2.5(D5xC4^2)320,290
C2.6(D5xC42) = D10:2C42central stem extension (φ=1)160C2.6(D5xC4^2)320,293
C2.7(D5xC42) = C4xC8:D5central stem extension (φ=1)160C2.7(D5xC4^2)320,314
C2.8(D5xC42) = D10.5C42central stem extension (φ=1)160C2.8(D5xC4^2)320,316
C2.9(D5xC42) = D5xC8:C4central stem extension (φ=1)160C2.9(D5xC4^2)320,331
C2.10(D5xC42) = D10.6C42central stem extension (φ=1)160C2.10(D5xC4^2)320,334
C2.11(D5xC42) = D10.7C42central stem extension (φ=1)160C2.11(D5xC4^2)320,335
C2.12(D5xC42) = C4xC10.D4central stem extension (φ=1)320C2.12(D5xC4^2)320,558
C2.13(D5xC42) = C4xD10:C4central stem extension (φ=1)160C2.13(D5xC4^2)320,565

׿
x
:
Z
F
o
wr
Q
<